RECYCLIZATION OF INTERMEDIATES IN AN ENAMINE REARRANGEMENT OF A PYRIMIDINIUM SALT WHEN TREATED WITH ISONIAZIDE

G. G. Danagulyan and D. A. Tadevosyan

Keywords: 2-hydrazinopyridine, isoniazide, pyrimidinium iodide, rearrangement intermediates, Kost–Sagitullin rearrangement.

In a paper devoted to study of the reaction of 2-(ethoxycarbonylmethyl)-1,4,6-trimethylpyrimidinium iodide (1) with carboxylic acid hydrazides, we reported on synthesis of derivatives of 1,2,4-triazolo[4,3-*a*]pyridine [1]. In particular, in that paper we discussed the hypothesis that when salt 1 was treated with isonicotinic acid hydrazide (2) (isoniazide), cyclization to form triazolopyridine 4 occurs through a step involving formation of the intermediate 2-hydrazidopyridine 3 (the product of a Kost–Sagitullin rearrangement). However, as shown by later X-ray diffraction studies, during the reaction we do not obtain triazolo[4,3-*a*]pyridines 4 but rather their isomers: derivatives of pyrazolo[1,5-*a*]pyrimidine 5 [2] (Scheme 1).

In studying the reaction of the intermediates for recyclization 6 and 7 with isoniazide 2, we obtained a compound with a structure matching that of the initially proposed structure for the intermediate product of "rearrangement with transamination" (compound 3). Probably during the reaction, the pseudobase 6, by eliminating a water molecule, is converted to the anhydro base 7, which also undergoes the indicated transformation. Upon recyclization of compounds 6 and 7, the pyridone 8 and also a slight amount of the demethylation product 9 are formed.

Thus for the first time we have observed a Kost–Sagitullin rearrangement with insertion of a carboxylic acid hydrazide moiety into the molecule of the reaction product.

The ¹H and ¹³C NMR spectra were obtained on a Varian Mercury-300 spectrometer (300 MHz and 76 MHz respectively), internal standard TMS; the mass spectra were recorded on an MK-1321 spectrometer with direct injection of the sample into the ion source with ionization energy 70 eV.

2-(Ethoxycarbonyl)methylidene-1,4,6-trimethyl-1,2-dihydropyrimidine (7). The pseudobase 6 (1.5 g, 6.6 mmol) in CHCl₃ (10 ml) was heated for 5 min, the solvent was distilled off, and 1.43 g (96%) of the anhydro base 7 was obtained, R_f 0.62 (*i*-PrOH–ammonia, 1:1). ¹H NMR spectrum (CDCl₃), δ , ppm (*J*, Hz): 1.28 (3H, t, J = 7.1, <u>CH</u>₃CH₂O); 2.22 (3H, s, 4-CH₃); 2.30 (3H, s, 6-CH₃); 3.19 (3H, s, 1-CH₃); 4.16 (2H, q, J = 7.1, O<u>CH</u>₂CH₃); 4.46 (1H, s, H-2'); 5.76 (1H, s, H-5). Found, %: C 63.56; H 7.35; N 13.78. C₁₁H₁₆N₂O₂. Calculated, %: C 63.44; H 7.74; N 13.45.

Reaction of Pseudobase 6 with Isoniazide 2. A mixture of compound **6** (0.9 g, 4 mmol) and hydrazide **2** (1.1 g, 8 mmol) was heated in absolute ethanol (10 ml) for 35 h, the solvent was distilled off, and the following were obtained by preparative fractionation on a column (toluene–acetone, 3:1): 0.21 g (17%) of 3-ethoxycarbonyl-4,6-dimethyl-2-(pyridine-4-carbonyl)hydrazino-1,2-dihydropyridine (**3**); mp 86-87°C, R_f 0.64

Institute of Organic Chemistry, National Academy of Sciences of the Republic of Armenia, Yerevan 375091; e-mail: gdanag@email.com. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 3, pp. 463-465, March, 2006. Original article submitted February 10, 2006.

(Silufol, 1:2 toluene–acetone); 0.35 g (45%) of pyridone **8**; and 0.06 g (8%) of compound **9**. ¹H NMR spectrum of compound **3** (DMSO-d₆), δ , ppm (*J*, Hz): 1.41 (3H, t, *J* = 7.1, CH₂<u>CH₃</u>); 2.34 (3H, s, 4-CH₃); 2.45 (3H, s, 6-CH₃); 4.37 (2H, q, *J* = 7.1, OCH₂); 6.50 (H, s, H-5); 7.82 (2H, d, *J* = 6.8, H-2' and -6'); 8.67 (2H, d, *J* = 6.8, H-3' and -5'); 9.27 (H, s, NH); 10.64 (H, br. s, NH). ¹³C NMR spectrum (DMSO-d₆), δ , ppm: 13.87 (CH₂<u>CH₃</u>); 22.08 (4-CH₃); 23.87 (6-CH₃); 60.47 (CH₂); 106.06 (C₍₃₎); 117.36 (C₍₅₎); 121.21 (C_(3') and C_(5')); 139.69 (C_(4')); 149.65 (C_(2') and C_(6')); 150.13 (C_(4')); 157.47 (C₍₆₎); 159.38 (C₍₂₎); 162.92 (NHC=O); 167.02 (C=O). Mass spectrum, *m*/*z* (*I*_{rel}, %): 314 (33), 296 (9), 252 (10), 204 (9), 187 (9), 153 (13), 135 (10), 107 (100), 79 (30), 68 (10), 52 (20). Found, %: C 61.43; H 5.29; N 18.19. C₁₆H₁₈N₄O₃. Calculated, %: C 61.13; H 5.77; N 17.82.

Reaction of Anhydro Base 7 with Isoniazide 2. Analogously to the procedure given above, the following were obtained from anhydro base 7 (0.62 g, 3 mmol) and isoniazide 2 (0.82 g, 6 mmol): 0.38 g (40%) of compound 3, 0.07 g (12%) of pyridone 8, and 0.03 g (5%) of compound 9.

The synthesis of compound **6** [R_f 0.63 (*i*-PrOH–ammonia, 1:1)] is described in [3], and its melting point and ¹H and ¹³C NMR spectra, as for compounds **8** [R_f 0.52 (toluene–acetone, 1:2)] and **9** [R_f 0.67 (toluene–acetone, 1:1)] [4, 5], are the same as for a known sample.

This research was carried out with the support of the US Civilian Research and Development Foundation (grant US CRDF ARB2-2640-YE-05) and within Topic 0543 of the Ministry of Education and Science of Armenia.

REFERENCES

- 1. G. G. Danagulyan, L. G. Saakyan, and D. A. Tadevosyan, *Khim. Geterotsikl. Soedin.*, 305 (2003).
- 2. G. G. Danagulyan, D. A. Tadevosyan, R. A. Tamazyan, and G. A. Panosyan, *Khim. Geterotsikl. Soedin.*, 262 (2006).
- 3. G. G. Danagulyan, F. S. Kinoyan, and D. A. Tadevosyan, *Khim. Geterotsikl. Soedin.*, 303 (2003).
- 4. G. G. Danagulyan, L. G. Saakyan, A. R. Katritskii, and S. N. Denisenko, *Khim. Geterotsikl. Soedin.*, 1572 (1999).
- 5. R. S. Sagitullin, A. N. Kost, and G. G. Danagulyan, *Tetrahedron Lett.*, 4135 (1978).